Integrative Physiology/Eperimental Medicine Hybrid In Vivo FMT-CT Imaging of Protease Activity in Atherosclerosis With Customized Nanosensors
نویسندگان
چکیده
Objective—Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap, and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address 2 major constraints currently associated with imaging of murine atherosclerosis (lack of highly sensitive probes and absence of anatomic information), we compared protease sensors (PS) of variable size and pharmacokinetics and coregistered FMT datasets with computed tomography (FMT-CT). Methods and Results—Coregistration of FMT and CT was achieved with a multimodal imaging cartridge containing fiducial markers detectable by both modalities. A high-resolution CT angiography protocol accurately localized fluorescence to the aortic root of atherosclerotic apoE / mice. To identify suitable sensors, we first modeled signal kinetics in-silico and then compared 3 probes with oligo-L-lysine cleavage sequences: PS-5, 5 nm in diameter containing 2 fluorochromes, PS-25, a 25-nm version with an elongated lysine chain and PS-40, a polymeric nanoparticle. Serial FMT-CT showed fastest kinetics for PS-5 but, surprisingly, highest fluorescence in lesions of the aortic root for PS-40. PS-40 robustly reported therapeutic effects of atorvastatin, corroborated by ex vivo imaging and qPCR for the model protease cathepsin B. Conclusions—FMT-CT is a robust and observer-independent tool for noninvasive assessment of inflammatory murine atherosclerosis. Reporter-containing nanomaterials may have unique advantages over small molecule agents for in vivo imaging. (Arterioscler Thromb Vasc Biol. 2009;29:1444-1451.)
منابع مشابه
Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors.
OBJECTIVE Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap, and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address 2 major co...
متن کاملNon-Invasive Quantitative In Vivo Imaging of Atherosclerosis
Current means of measuring disease in preclinical models of atherosclerosis include ex vivo assessment of disease tissues post-mortem and non-invasive imaging primarily of structural and anatomic features of lesions, in vivo. A non-invasive, quantitative means of imaging known biologic profiles associated with atherosclerotic disease, in vivo, would enable a robust additional understanding and ...
متن کاملPatient absorbed dose comparison in CT and Stereoradiography (EOS) imaging during lower limb torsion evaluation using in-vivo and in-vitro dosimetry methods
Introduction: Accurate evaluation of femoral and tibial torsion is essential for children or adult with legs deformity, becuse incorrect legs morphogenesis can lead to pathological situation. CT scan is commonly used for the measurement of skeletal bone parameters. But, disability in imaging from standing and sitting posture and absorb dose of patients are deficits of this meth...
متن کاملDual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct.
Inflammatory responses after myocardial infarction profoundly impact tissue repair. Yet, efficient tools to serially and noninvasively assess cellular and molecular functions in postinfarct inflammation are lacking. Here we use multichannel fluorescent molecular tomography (FMT) for spatiotemporal resolution of phagocytic and proteolytic activities mediated by macrophages and neutrophils in mur...
متن کاملHybrid FMT-MRI applied to in vivo atherosclerosis imaging.
Combining Fluorescent Molecular Tomography (FMT) with anatomical imaging, e.g. MRI facilitates interpreting functional information. Furthermore, using a heterogeneous model for light propagation has been shown in simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging...
متن کامل